EXPERIMENT RECORD N° 9641
THERMOLAB/THERMOPROP - High-Precision Thermophysical Property Data of Liquid Metallic Alloys for Modelling of Industrial Solidification Processes, Batch 2
  1. 2016 • ISS Increments 49-50
  2. 2017 • ISS Increments 51-52
  3. 2017 • ISS Increments 53-54
  4. 2018 • ISS Increments 55-56
  5. 2018 • ISS Increments 57-58
  6. 2019 • ISS Increments 59-60
Physical Sciences:
  • Material Sciences
  • Thermophysical Properties of Melts
EML - Electromagnetic Levitator
Wim Sillekens
wim.sillekens@esa.int
H.J. Fecht (1), R.K. Wunderlich (1), M. Mohr (1), J. Brillo (2), L. Battezzati (3), A. Dommann (4), A. Neels (4), Y. Champion (5), O. Budenkova (5), K. Pericleous (6), V. Bojarevics (6), E. Ricci (7), R. Novakowic (7), H. Henein (8), W. Lojkowski (9), K.F. Kelton (10), S. Seetharaman (11), S. Seetharaman (12), D.M. Matson (13), R.W. Hyers (14), R. Valiev (15), M. Watanabe (16), J.Z. Jiang (17), I. Ronga (18), J. Blumm (19), M. Balliel (20), J. Esslinger (21), R. Boom (22), C. Treadgold (22), E. Flender (23)
(1)  
Ulm University
Institut für Mikro- und Nanomaterialien
Albert-Einstein-Allee 47
89081 Ulm
GERMANY
e-mail:  
hans.fecht@uni-ulm.de
rainer.wunderlich@uni-ulm.de
markus.mohr@uni-ulm.de
(2)  
Deutsches Zentrum für Luft- und Raumfahrt
Institut für Materialphysik im Weltraum
Porz-Wahnheide
Linder Höhe
51147 Köln
GERMANY
e-mail:  
juergen.brillo@dlr.de
(3)  
University of Turin
Dipartimento di Chimica Inorganica
Chimica Fisica e Chimica dei Materiali
Via Pietro Giuria, 7
10125 Torino
ITALY
e-mail:  
livio.battezzati@unito.it
(4)  
EMPA Eidgenössische Materialprüfanstalt
9014 St. Gallen
SWITZERLAND
e-mail:  
alex.dommann@empa.ch
antonia.neels@empa.ch
(5)  
Centre National de la Recherche Scientifique
CNRS-SIMAP
1130, rue de la Piscine
38402 St. Martin D’Heres
FRANCE
e-mail:  
champion@icmpe.cnrs.fr
annie.fournier-gagnoud@simap.grenoble-inp.fr
olga.budenkova@simap.grenoble-inp.fr
(6)  
University of Greenwich
Old Royal Naval College
Park Row
Greenwich
London SE10 9LS
UK
e-mail:  
k.pericleous@greenwich.ac.uk
v.bojarevics@greenwich.ac.uk
(7)  
CNR-ICMATE
Department of Genova
Via de Marini, 6
16149 Genova
ITALY
e-mail:  
enrica.ricci@ge.icmate.cnr.it
(8)  
Advanced Materials and Processing Laboratory
University of Alberta
276B Chemical-Materials Engineering Building
Edmonton, AB T6G 2G6
CANADA
e-mail:  
hhenein@ualberta.ca
(9)  
Instytut Wysokich Cisnien PAN
Sokolowska 29/37
01-142 Warsaw
POLAND
e-mail:  
wl@unipress.waw.pl
(10)  
Washington University
One Brookings Dr.
St. Louis, Mo 63130-4899
USA
e-mail:  
kfk@wustl.edu
(11)  
University of Warwick
International Digital Laboratory
Coventry CV4 7AL
UK
e-mail:  
s.seetharaman@warwick.ac.uk
(12)  
KTH Royal Institute of Technology
Department of Materials Science and Engineering
Brinellvägen 23
10044 Stockholm
SWEDEN
e-mail:  
raman@kth.se
(13)  
Tufts University
School of Engineering
Science and Engineering Complex
200 College Avenue
Medford, MA 02155
USA
e-mail:  
douglas.matson@tufts.edu
(14)  
University of Massachusetts
160 Governors Drive
Amherst, MA 01003-2210
USA
e-mail:  
hyers@ecs.umass.edu
(15)  
Ufa State Aviation Technical University
Institute of Physics of Advanced Materials
The Republic of Bashkortostan
ul. Karla Marxa 12
450000 Ufa
RUSSIA
e-mail:  
rzvaliev@mail.rb.ru
(16)  
Gakushuin University
Department of Physics
1-5-1 Mejiro, Toshima
Tokyo, 171-8588
JAPAN
e-mail:  
masahito.watanabe@gakushuin.ac.jp
(17)  
Zhejiang University
International Centre for New-Structured Materials
Department of Materials Science and Engineering
310027 Hangzhou
CHINA
e-mail:  
jiangjz@zju.edu.cn
(18)  
AREVA - CEZUS
Avenue Paul Girod
73403 Ugine Cédex
FRANCE
e-mail:  
isabelle.ronga@areva.com
(19)  
Netzsch Gerätebau GmbH
Wittelsbacherstraße 42
95100 Selb
GERMANY
e-mail:  
j.blumm@ngb.netzsch.com
(20)  
BALLIEL ALSTOM Switzerland Ltd.
Brown Boveri Strasse 7
5401 Baden
SWITZERLAND
e-mail:  
martin.balliel@power.alstom.com
(21)  
MTU Aero Engines GmbH
Dachauer Straße 665
80995 München
GERMANY
e-mail:  
joerg.esslinger@muc.mtu.de
(22)  
Corus Research Development & Technology
P.O. Box 10000
1970 CA IJmuiden
THE NETHERLANDS
e-mail:  
rob.boom@corusgroup.com
chris.treadgold@corusgroup.com
(23)  
MAGMA mbH
Kackertstraße 11
52072 Aachen
GERMANY
e-mail:  
e.flender@magmasoft.de
EML
EML on board of the ISS is the European contribution to materials science research in microgravity. It was installed in 2014 by ESA astronaut Alexander Gerst. 

Electromagnetic levitator (EML) is a containerless processing technique of electrically conducting samples.  It consists of a coil system for sample positioning and heating. The free-floating drop method allows cooling of the sample below the temperature where it would normally solidify. This enables studies of thermophysical properties and solidification processes of undercooled melts. 

The results of microgravity research are of  great importance for a more profound understanding of solidification and microstructure formation. They will help to improve modelling and are significant for numerous metallic alloys applied e.g. in medicine, aerospace, engineering, machining and other fields.

THERMOLAB/THERMOPROP
THERMOLAB and THERMOPROP projects study thermophysical properties of liquid metal melts as a function of temperature and convection. These important yet unknown parameters include following volume and surface dependant properties:
• surface tension
• viscosity
• density and thermal expansion coefficients
• specific heat
• enthalpy, entropy and Gibbs free energy of different phases
• thermal diffusivity
• electrical conductivity
• thermal conductivity
• total hemispheric emissivity
• melting range, fraction solid/liquid and liquid undercooling level.

The basic and crucial thermophysical property data will serve as a benchmark for casting and solidification process modelling. International science team and worldwide industry partners are working in synergy to select the most relevant industrial samples to investigate in the framework of the microgravity experiments. The chosen samples include Ni-, Fe-, Ti-, Zr- and Pt- based alloys. These alloys are processed with different casting techniques – continuous casting, investment casting, centrifugal casting and pressure die casting –  to later become a part of an engine, power plants, jet engines or functional materials for biomedical, electronic transport, hydrogen storage or magnetic materials. 

The project aims at not only improving the current casting techniques but also triggering the development of new casting techniques for advanced materials. 

EML
In the EML, the samples are positioned and heated by an electromagnetic rf-field, which is applied via a coil system. The EML uses a pyrometer for temperature measurements. A high-speed video camera aligned along the axial direction and a high-speed camera aligned in the radial direction of the coil record and monitor sample surface oscillations in real time. These are used to determine surface tension and viscosity of liquid melts. The cameras also record solidification events, radial thermal fields and thermal expansion of  samples. Furthermore, Sample Coupling Electronics (SCE), an additional instrument installed in the EML Experimental Module in 2016, is used to measure electrical properties of samples. Modulation of the heating power and recording temperature response of the sample allows the measurement of other thermophysical properties, such as the specific heat capacity.

THERMOLAB/THERMOPROP
The samples chosen for processing in Batch 2 are TiAl33Nb4.8Cr2.55, FeCr15Mo4C1.5B6Y2, LM105 and Zr-O(0.1)

THERMOLAB/THERMOPROP is concerned with the measurement of thermophysical properties of industrial alloys in the liquid phase consisting of the specific heat capacity, enthalpy of fusion, density as a function of temperature, surface tension, viscosity and thermal transport properties. In addition, the experiment shall investigate the onset of turbulence as a function of the rf-field and its influence on the viscosity measurement by the oscillating drop method. A new method with stochastic excitation for calorimetric measurement shall be tested for non-contact calorimetry. As such, this experiment combines application oriented thermophysical property measurements with more fundamental investigations of electromagnetically driven fluid flows and their effect on thermophysical property measurements.
The measured data are currently being analysed. (status as of March 2019)
[1]  
R.K. Wunderlich, C. Ettl, H.J. Fecht, (2001), "Specific Heat and Thermal Transport Measurements of Reactive Metallic Alloys by Noncontact Calorimetry in Reduced Gravity", International Journal of Thermophysics, 22, 2, DOI: 10.1023/A:1010739318317.
[2]  
R.K. Wunderlich, H.J. Fecht, (2001), "Thermophysical properties of bulk metallic glass forming alloys in the stable and undercooled liquid - a microgravity investigation", Materials transactions, 42, 4, DOI: 10.2320/matertrans.42.565, pp. 565-578.
[3]  
R.K. Wunderlich, H.J. Fecht, (2003), "Thermophysical Property Measurements by Electromagnetic Levitation Methods under Reduced Gravity Conditions", Journal of the Japan Society of Microgravity Application, 20, 3, pp. 192-205.
[4]  
R.K. Wunderlich, H.J. Fecht, (2005), "Modulated electromagnetic induction calorimetry of reactive metallic liquids", Measurement Science and Technology, 16, 2, DOI: 10.1088/0957-0233/16/2/011, pp. 402.
[5]  
R. Aune, S. Seetharaman, L. Battezzati, I. Egry, F. Schmidt-Hohagen, J. Étay, H.J. Fecht, R.K. Wunderlich, A. Passerone, E. Ricci, R. Novakovic, (2006), "Surface tension measurements of Al-Ni based alloys from ground-based and parabolic flight experiments: Results from the ThermoLab project", Microgravity Science and Technology, 18, 3-4, DOI:10.1007/bf02870384, pp. 73.
[6]  
L. Battezzati, (2010), "Thermodynamic, transport and mechanical properties of amorphous metallic alloys: Relation to the glass transition", Journal of Alloys and Compounds, 495, 2, DOI: 10.1016/j.jallcom.2009.10.036, pp. 294-298.
[7]  
H.J. Fecht, R.K. Wunderlich, E. Ricci, J. Étay, I. Egry, S. Seetharaman, L. Battezzati, (2010), "The ThermoLab project: Thermophysical property measurements in space for industrial high temperature alloys", Journal of the Japanese Society of Microgravity Application, 27, 4, pp. 190-198.
[8]  
W. Soellner, A. Seidel, C. Stenzel, W. Dreier, B. Glaubitz, (2010), "EML - Containerless processing facility for materials science on board the ISS", Journal of the Japanese Society of Microgravity Application, 27, 4, pp. 183-189.
[9]  
H.J. Fecht, (2011), "Laboratory science with space data: accessing and using space-experiment data", chapter: Materials Science, Springer Science & Business Media.
[10]  
R. Novakovic, (2011), "Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys", Journal of Physics: Condensed Matter, 23, 23, DOI:10.1088/0953-8984/23/23/235107, pp. 235107.
[11]  
P. Schetelat, J. Étay, (2011), "A new approach for non-contact calorimetry: system identification using pseudo-white noise perturbation", Heat and Mass Transfer, 47, 7, DOI: 10.1007/s00231-010-0711-6, pp. 759-769.
[12]  
A. Seidel, W. Soellner, C. Stenzel, (2011), "EML - An electromagnetic levitator for the International Space Station", Journal of Physics: Conference Series, 327, DOI: 10.1088/1742-6596/327/1/012057, pp. 012057.
[13]  
R.K. Wunderlich, H.J. Fecht, (2011), "Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments", International Journal of Materials Research, 102, 9, DOI: 10.3139/146.110572, pp. 1164-1173.
[14]  
R.K. Wunderlich, H.J. Fecht, M. Schick, I. Egry, (2011), "Time Dependent Effects in Surface Tension Measurements of an Industrial Fe‐alloy", Steel Research International, 82, 6, DOI: 10.1002/srin.201000156, pp. 746-752.
[15]  
D.M. Herlach, D.M. Matson, (2012), "Solidification of containerless undercooled melts", Wiley‐VCH Verlag GmbH & Co. KGaA, DOI:10.1002/9783527647903.
[16]  
R.K. Wunderlich, H.J. Fecht, I. Egry, J. Étay, L. Battezzati, E. Ricci, T. Matsushita, S. Seetharaman, (2012), "Thermophysical Properties of a Fe‐Cr‐Mo Alloy in the Solid and Liquid Phase", Steel Research International, 83, 1, DOI: 10.1002/srin.201100156, pp. 43-54.
[17]  
J. Étay, (2013), "Electromagnetic levitation White-noise measurement protocol for modulated calorimetry", The Japan Society of Microgravity Application - JASMA.
[18]  
L. Battezzati, G. Dalla Fontana, (2014), "Thermodynamics and fragility of glass-forming alloys", Journal of Alloys and Compounds, 586, DOI: 10.1016/j.jallcom.2012.10.027, pp. S9-S13.
[19]  
C. Costa, S. Delsante, G. Borzone, D. Zivkovic, R. Novakovic, (2014), "Thermodynamic and surface properties of liquid Co-Cr-Ni alloys", The Journal of Chemical Thermodynamics, 69, DOI: 10.1016/j.jct.2013.09.034, pp. 73-84.
[20]  
J.Z. Jiang, D. Hofmann, D.J. Jarvis, H.J. Fecht, (2015), "Low‐Density High‐Strength Bulk Metallic Glasses and Their Composites: A Review", Advanced Engineering Materials, 17, 6, DOI: 10.1002/adem.201400252, pp. 761-780.
[21]  
G. Dalla Fontana, A. Castellero, L. Battezzati, (2016), "Thermodynamics and fragility of Fe-based glass forming melts", Journal of Non-Crystalline Solids, 433, DOI: 10.1016/j.jnoncrysol.2015.06.006, pp. 103-108.
[22]  
A. Diarra, (2016), "Mesures de propriétés thermiques des métaux par procédé électromagnétique", PhD Thesis Université Grenoble Alpes, Université Grenoble Alpes.
[23]  
D.M. Matson, X. Xiao, J. Rodriguez, R.K. Wunderlich, (2016), "Preliminary experiments using electromagnetic levitation on the International Space Station", International Journal of Microgravity Science and Application, 33, 2, DOI: 10.15011/jasma.33.330206, pp. 330206.
[24]  
J. Étay, A. Diarra, A. Gagnoud, C. Garnier, S. Massucci, M. Al Amir, A. Sulpice, S. Rivoirard, (2017), "Measuring Thermal Conductivity and Heat Capacity of Molten Metallic Alloys by Electromagnetic Levitation in DC Field", Magnetohydrodynamics, 53, 2, DOI: 10.22364/mhd.53.2.7, pp. 289-298.
[25]  
H.J. Fecht, R.K. Wunderlich, (2017), "Fundamentals of liquid processing in low Earth orbit: From thermophysical properties to microstructure formation in metallic alloys", The Journal of The Minerals, Metals & Materials Society - JOM, 69, 8, DOI: 10.1007/s11837-017-2417-4, pp. 1261-1268.
[26]  
R.K. Wunderlich, H.J. Fecht, G. Lohöfer, (2017), "Surface tension and viscosity of the Ni-based superalloys LEK94 and CMSX-10 measured by the oscillating drop method on board a parabolic flight", Metallurgical and Materials Transactions B, 48, 1, DOI: 10.1007/s11663-016-0847-y, pp. 237-246.
[27]  
R.K. Wunderlich, U. Hecht, F. Hediger, H.J. Fecht, (2018), "Surface Tension, Viscosity, and Selected Thermophysical Properties of Ti48Al48Nb2Cr2, Ti46Al46Nb8, and Ti46Al46Ta8 from Microgravity Experiments", Advanced Engineering Materials, 20, DOI: 10.1002/adem.201800346, pp. 1800346.
[28]  
M. Mohr, R.K. Wunderlich, S. Koch, P.K. Galenko, A.K. Gangopadhyay, K.F. Kelton, J.Z. Jiang, H.J. Fecht, (2019), "Surface tension and viscosity of Cu50Zr50 measured by the oscillating drop technique on board the International Space Station", Microgravity Science and Technology, DOI: 10.1007/s12217-019-9678-1.
[29]  
M. Mohr, R.K. Wunderlich, K. Zweiacker, S. Prades-Rödel, R. Sauget, A. Blatter, R. Logé, A. Dommann, A. Neels, W.L. Johnson, H.J. Fecht, (2019), "Surface tension and viscosity of liquid Pd43Cu27Ni10P20 measured in a levitation device under micro-gravity", npj Microgravity, in press.
[30]  
R.K. Wunderlich, M. Mohr, (2019), "Non-linear effects in the oscillating drop method for viscosity measurements", High Temperatures - High Pressures, in press.
click on items to display

Figure 1: EML Experiment Module was assembled and installed on board of the ISS by ESA astronaut Alexander Gerst in 2014. Copyright: NASA/ESA

Figure 2: Electromagnetic levitator coil system including the levitated sample. Copyright: DLR

Figure 3: General experiment profile showing melting, undercooling and solidification. Copyright: ESA

Figure 4: Influence of convection on incubation time between nucleation of metastable phase and subsequent transformation to the stable phase: (a) low stirring = long time, (b) high stirring = short time, and (c) relationship between delay and undercooling as a function of experimental conditions. These results conclusively show that convection significantly decreases the delay time. Turbulent space and turbulent ground EML tests show a similar behaviour and laminar space results approach but do not achieve the delay behaviour of quiescent ground ESL. Copyright: Matson D., Xiao X., Rodriguez J.E., Lee J., Hyers R.W., Shuleshova O., Kaban I., Schneider S., Karrasch S., Burggraf S., Wunderlich R.K., Fecht H.-J.; "Use of thermophysical properties to select and control convection during rapid solidification of steel alloys using electromagnetic levitation on the space station"; JOM 69/8 (2017): 1311–1318 (DOI 10.1007/s11837-017-2396-5)
 
© 2019 European Space Agency