EXPERIMENT RECORD N° 9171
FASES - Fundamental and Applied Studies in Emulsion Stability
  1. 2013 • ISS Increments 35-36
  2. 2013 • ISS Increments 37-38
  3. 2014 • ISS Increments 39-40
Physical Sciences:
  • Fluid physics
  • Interfacial Phenomena
FAST (Facility for Adsorption and Surface Tension)
Olivier Minster
olivier.minster@esa.int
L. Liggieri (1), M. Antoni (2), D. Clausse (3), R. Miller (4), G. Loglio (5), L. Del Gaudio (6), C. Dalmazzone (7), T. Karapantsios (8), V. Dutschk (9), R.G. Rubio (10), B. Noskov (11), A. Makievski (12), J. Ouazzani (13)
(1)  
Istituto per l´Energetica e le Interfasi CNR
via De Marini 6
16149 Genova
ITALY
Tel:  
+39(0)1.06475.722
Fax:  
+39(0)1.06475.700
e-mail:  
l.liggieri@ge.ieni.cnr.it
(2)  
Université Paul Cézanne - Centre St. Jerome
BP 451,Marseille Cedex 20
FRANCE
Tel:  
+33(0)4.91282725(lab:9172)
Fax:  
+33(0)4.91289152
e-mail:  
m.antoni@univ-cezanne.fr
(3)  
UTC Dép. Genie Chimique, Université de Technologie
Compiègne
FRANCE
Tel:  
+33(0)3.44234439
e-mail:  
daniele.clausse@utc.fr
(4)  
MPI-KGF Max-Planck Inst. für Kolloid und Grenzflächenforschung
Wissenschaftspark Potsdam-Golm
Am Mühlenberg 1 OT Golm
14476 Potsdam
GERMANY
Tel:  
+49(0)331.5679252
e-mail:  
Reinhard.Miller@mpikg.mpg.de
(5)  
University of Florence
Via della Lastruccia, 7-13
50019 Sesto Fiorentino (FI)
ITALY
Tel:  
+39(0)55.457.3487
e-mail:  
giuseppe.loglio@unifi.it
(6)  
ENI E&P
San Donato Milanese
ITALY
e-mail:  
lucilla.delgaudio@eni.it
(7)  
IFP Institute Français du Pétrole
Riel- Malmaison
FRANCE
e-mail:  
Christine.DALMAZZONE@ifp.fr
(8)  
AUTH Dept. Chemical Eng. Aristotle Univ
Thessaloniki
GREECE
e-mail:  
karapant@chem.auth.gr
(9)  
Faculty of Chemical Engineering
University of Twente
Twente
THE NETHERLANDS
e-mail:  
V.Dutschk@utwente.nl
(10)  
Dept. Quimica Fisica, Universidad Complutense
Madrid
SPAIN
e-mail:  
rgrubio@quim.ucm.es
(11)  
St. Petersburg State University
RUSSIA
e-mail:  
borisanno@mail.ru
(12)  
SINTERFACE Technologies
Dr. Reinhard Miller & Dr. Alexander Makievski GbR
Volmerstraße 5
12489 Berlin
GERMANY
Tel:  
+49(0)30.63923240
Fax:  
+49(0)30.63923241
e-mail:  
info@sinterface.com
(13)  
Arcofluid
4, Allée du Doyen Georges Brus
33600 Pessac
FRANCE
Tel:  
+33(0)5.56.15.34.69

BACKGROUND
One of the most relevant problems in emulsion technology concerns the control of emulsion stability. For example, high stability and methods of long-term stability prognosis are necessary for emulsions in foods, cosmetics, pharmacy etc. Separation of the two phases and then, destabilisation, is instead required in waste water processing and oil recovery. In both cases, the target can be achieved by introducing specific additives (like surfactants) which adsorb and modify the properties of droplet interfaces. Thus, it is clear that the adsorption of surface active molecules plays a fundamental role in emulsion science.
However, at present, the links between the physical chemistry of the droplets interface to the collective properties of an emulsion are only qualitative, so that the criteria used in industry are mainly empirical. The FASES project has aimed at reducing this gap, which is today an important limitation of the emulsion science and for the development of applications.

FASES programme is composed of two projects: FASES EC and FASTER.

GOAL
Study the links between the physical chemistry of the droplets interface, the liquid films and the collective properties of an emulsion.

Specific goals of FASES and FASTER:
- Characterisation of a liquid/liquid interface Surfactant adsorption dynamics.
- Characterisation of Drop/drop interactions and the behaviour of the liquid film between the drops.
- Droplet dynamics and evolution of the droplet size distribution during emulsion destabilisation.
- Systematic studies on model emulsions will allow developing methods for the evaluation and prediction of systems stability.

Justification for the need of space experiment:
The additives (particles and surfactant) added in emulsion can hardly be studied on ground because the gravity modifies the physical properties at two scales:

At the microscopic scale, the gravity provokes liquid fluxes and modifies interface thinness. The surfactant transfer effects are then masked. In microgravity, interfaces elasticity is only driven by surfactant concentration; adsorption and diffusion of surfactant could be studied with a great accuracy.
At the macroscopic scale, the drainage (creaming) is an effect faster and/or stronger than the coalescence (film rupture) and aggregation (clustering of droplets). Microgravity conditions avoid the drainage; the surfactant dynamic and particles effects drive then alone the structural evolution.

Previous flight experiments (precursors):
- FAST Successfully flown on STS-95 Shuttle mission (1998)
- FAST II Successfully flown on STS-107 Shuttle mission (2003)

OBJECTIVES of FASES and FASTER
This experiment together with another 2 performed in the FAST (Facility for Adsorption and Surface Tension) facility will address single and multiple interfaces, as affected by various surfactants. An important part of the programme aims at establishing links between emulsion stability and physicochemical characteristics of droplet interfaces. Further experiments are planned to investigate droplet dispersion in emulsions and phase inversion. On the basis of these studies, the team will generate a model of emulsion dynamics to be transferred to industrial applications.

Further results will be provided by the FASTER project: characterisation of a liquid/liquid interface, surfactant adsorption dynamics, adsorption dynamics, surfactant transfer and interfacial rheology and role of surface active additives in stabilisation.

FASTER - Facility for Adsorption and Surface TEnsion Research 
ISS Increment 39-40 - 2014

The experiment samples are stored in a cell with a liquid composition.
FASES EC represents 44 cells (3 types: ITEM-S, ITEM-F and EMPI)

The 44 cells are positioned in a carrousel. The position of a cell is not necessarily related to the experimental sequence. However the final arrangement will be defined with respect to the ongoing tests about life time adsorption on the cell wall and leakage.

A run is a full experiment for 1 temperature for ITEM and at 1 time for EMPI.

Scan
The ITEM cells are scanned by a microscope in two ways per scan: one way and return. The scan generates images which allow rebuilding the structure of the emulsion. The amount of data depends of the scanning step (distance between two images) and of the scanning velocity (number of images to be stored per second).
One way scan
In a one-way scan, the microscope advances across the viewing range in only one direction. The amount of data generated is half that of a nominal two-way scan.

ITEM-S
22 samples
#1 to #8 are processed 3 times (3 runs per sample) at 3 different temperatures
#9 to #22 are processed 1 time

ITEM-F
6 samples experiments are processed 4 times

EMPI experiments
16 samples, processed 1 time (1 run per sample)

The cells more sensitive to aging will be used first. The cells arrangement in the carrousel will be defined with respect to the on-going tests about life time and leakage.

Comment on the protocol of the ITEM sample: The images of the scanning are taken with the camera of FSL and the microscope (lenses system) is controlled by the software of ECCU (experiment container control unit) of the FASES EC. There are two options either the "synchronised mode" or the "free mode".

In the "synchronised mode", the software of the ECCU can synchronise the camera and the microscope only for repeatable sequences of up to 40 images with a delay of some seconds.

In the "free mode", the microscope and the FSL camera are not synchronised. It is possible to start the microscope (giving the scanning steps and the speed) and, in parallel, start the FSL camera (giving the frequency), but with a delay with a predictability. The Science team prefers the approach without synch, called "free mode", because there is no limitation of number of images.

Parameters measured:
22 ITEM-S samples:
Scan (series of images at different scanning depth) versus time (1Smin<time<6oomin) at up to three temperatures (15, 25, 35)

6 ITEM-F samples: Images of the emulsion at different temperature (-50C <temperature<+40C)

16 EMPI samples: Curve of Heat flux (mW) versus temperature (-soC<temperature<+1SC), for seven different aging times (o<aging time<1440 min).
Note: EMPI samples will be thermally controlled at 40C

The cells have to be filled maximum 1 month (+ /-1 week) before the launch date. The cells will be ordered in the carrousel with respect to the on-going tests about life time and leakage.
 
The instrument shall be operated 24 hours a day during the first two weeks of operation. Tests performed end of 2009 showed that problems can occur 5 to 6 weeks after the filling. There are problems of bubbles appearing and drops sticking to the windows, it appends with time, and after that the sample is lost. There is no exact quantification of the dynamics of these processes. One can maximise the results by performing as many runs as possible at the beginning of operation. Thus, a maximum number of experiments shall be performed during the first weeks of operation.

The 44 samples will be processed in a given order depending on the samples life time. So far, the samples composed of water and hexane will have the most limited life time and will be processed first.

ITEM-S  EXPERIMENT PROCEDURE
Samples 1 to 8 will be processed 3 times in single experiments at different temperatures, specified by the index "k". The processing sequence has to be optimised in order to ensure the maximum time between single experiments on the same sample. Samples 9 to 22 will instead be processed only once.
The single F ASES ITEM-S experiments follow three main steps A, B and C.

A - Emulsion preparation and optical settings (phase 1)
Phase 1 consists of a basic preparation operations mainly devoted to temperature control, to initialise the position of the focal plane to produce the emulsion (stirring) and to adjust optics. The reference time is given when opening the record.
B - Sample scanning (phase 2)
Sample scanning is split in three nested loops: B.1, B.2 and B.3.
B.1. The inner loop (loop over index m) corresponds to scanning and waiting time. For a given sample, each loop over m has duration Δtfast. It consists in the following operations:
a) three back and forth scanning shots with different scan steps (plane_dist1_m to plane_dist3_m), scan rates (scan_rate1_m to scan_rate3_m), travelling lengths (trav _lem_m to trav_len3_m) and initial plane location (init_plane1 to init_plane3).
b) Once these three scanning are performed, a pause of duration wait_time_scan_short is introduced.
c) After the above standing period three new scanning shots are performed. This procedure is up to time time_cycle_long is reached (reference time being the beginning of the first shot).
B.2. The second level loop (loop over index n) is aimed to characterize long term ageing properties of the emulsions. After loop B1 is realized, a pause of duration wait_time_cycle_long is used to let the emulsion evolve. This procedure is iterated up to time time_cycle_long is reached. For a given sample, each loop of index n has constant duration Δtlong. This loop actually enables changes in the scanning rates and the modification of the value of wait_time_cycle_long. This allows for a larger flexibility for image acquisition and storing. It will also make possible an important reduction of memory capacities (if necessary) by increasing the values of wait_time_cycle_long. The value of wait_time_cycle_long is currently set to 0 for all experiments.
B.3. The external loop runs over k=1 to 3. This loop actually enables changes in the temperatures of the samples. C - Sample removing
The last operation consists in heating the sample to its storage temperature and removing it back to the storage rail.

ITEM-F EXPERIMENT PROCEDURE
Samples 1 to 6 will be processed several times in single experiments with different cooling rates specified by the index "k". The processing sequence has to be optimised in order to ensure good thermal control and image quality.
The FASES ITEM-F experiments follow three main steps A, B and C.

A - Emulsion preparation and optical settings (phase 1)
Same procedure than for ITEM-S samples.
B - Sample cooling and scanning (phase 2)
Sample scanning is split in two nested loops: B.1 and B.2.
B.1. The inner loop (loop over index n) corresponds to sample cooling and scanning.
B.2. External loop (loop over index k) is aimed to change cooling conditions.
C - Sample removing
The last operation consists in heating the sample to its storage temperature and removing it back to the storage rail.

FASTER EXPERIMENT PROTOCOL
The FASTER container is composed of 2 cells. Each cell is divided in 2 chambers with 2 syringes of surfactant. One chamber is called matrix fluid and the other is called disperse fluid (which is the liquid of the drop). Experiments are performed at different temperatures and at different surfactant concentrations.

The entire experimental timeline for one EC is composed by all the experiment runs performed at all the 3 or 4 temperature set points. Once the runs have been performed at different temperatures, the composition is changed by injection of surfactant. All injections are irreversible; once the concentration increases there is no way to decrease it.

There are 23 samples compositions:

- 11 surfactant solutions concentrations are foreseen in the cell #1
- 12 surfactant solutions concentrations are foreseen in the cell #2

Eventually two optical magnification ratios are available.

Step 1: Thermoregulation: For each new temperature, the liquid temperature set point for the thermal control

Step 2.1: Creation of the drop: the drop is created by the predefined sequence.

run procedure:

- Nominal position: At the end of the run, the meniscus gets back to a nominal position (in the capillary) controlled by the compensation piston. The Nominal Meniscus Position (also called NMP) is the position where to start and end a run with in a particular fluid interface position.

- Predefined sequences: Always starts from a nominal meniscus position. Sequences are performed till the end of the run.

Step 2.2: Magnification change:

During the run, the Magnification Change is used to change the FASTER optical system between two possible magnification ratios.

Step 3: Downlink / update

- Illumination loop: The Illumination loop is used to adjust the image brightness to optimise the acquired image quality.
- Downlink Images and Raw signal
- Updated run definition with new sequences

Step 4: Surfactant injection

For each new concentration. A predefined amount of surfactant solution is injected to change the surfactant concentration in the matrix chamber of the cell. The surfactant injection is irreversible.

Planned analyses for FASTER

The science team will study the surface Rheological characteristics of surfactant solutions form the amplitude-and phase-frequency characteristics: complex elasticity (elastic and viscosity), adsorption layer characteristics and shapes of the drop.

[1]  
B.A. Noskov, G. Loglio, R. Miller, (2004), "Dilational Visco-elasticity of Polyelectolyte/Surfactant Adsorption Films at the Air/Water Interface: Dodecyltrimethylammonium Bromide and Sodium Poly(styrene sulfonate)", The Journal of Physical Chemistry, 108, 48, DOI: 10.1021/jp046560s, pp. 18615-18622.
[1]  
L. Liggieri, V. Attolini, M. Ferrari, F. Ravera, (2002), "Measurement of the Surface Dilational Visco-Elasticity of Adsorbed Layers by a Capillary Pressure Tensiometer", The Journal of Colloid and Interface Science, 255, pp. 225.
[2]  
G. Loglio, P. Pandolfini, R. Miller, A. Makievski, J. Krägel, F. Ravera, (2004), "Oscillation of interfacial properties in liquid systems: assessment of harmonic distortion", Physical Chemistry Chemical Physics, 6, DOI: 10.1039/B314592C, pp. 1375-1379.
[3]  
B.A. Noskov, A.V. Akentiev, A.Y. Bilibin, D.O. Grigoriev, G. Loglio, I.M. Zorin, R. Miller, (2004), "Dynamic Surface Properties of Poly(N-Isopropylacrylamide) Solutions", Langmuir, 20, 22, DOI: 10.1021/la048836t, pp. 9669-9676.
[4]  
R. Miller, D.O. Grigoriev, E.V. Aksenenko, S.A. Zholob, M. Leser, M. Michel, V.B. Fainerman, (2004), "Thermodynamic and Adsorption Kinetic Studies of Protein/Surfactant Mixtures", Food Colloids: Interactions, Microstructure and Processing, ISBN 0 85404 638 0, E. Dickinson, Royal Society of Chemistry, pp. 120-130.
[5]  
V.B. Fainerman, S.A. Zholob, M.E. Leser, M. Michel, R. Miller, (2004), "Adsorption from mixed ionic surfactant/protein solutions - analysis of ion binding", Journal of Physical Chemistry B, 108, 43, DOI: 10.1021/jp0497099, pp. 16780-16785.
[6]  
B.A. Noskov, A.V. Akentiev, D.O. Grigoriev, G. Loglio, R. Miller, (2005), "Ellipsometric Study of Non-Ionic Polymer Solutions", Journal of Colloid and Interface Science, 282, 1, pp. 38-45.
[7]  
V.B. Fainerman, R. Miller, (2004), "Maximum bubble pressure tensiometry - an analysis of experimental constrains", Advances in Colloid and Interface Science, 108-109, pp. 287-301.
[8]  
V.B. Fainerman, V.D. Mys, A.V. Makievski, R. Miller, (2004), "Correction for the aerodynamic resistance and viscosity in maximum bubble pressure tensiometry", Langmuir, 20, 5, DOI: 10.1021/la030271y, pp. 1721-1723.
[9]  
V.B. Fainerman, R. Miller, A.V. Makievski, (2004), "Accurate analysis of the bubble formation process in maximum bubble pressure tensiometry", Review of Scientific Instruments, 75, 1, doi:10.1063/1.1632996, pp. 213-221.
[10]  
B.A. Noskov, S.N. Nuzhnov, G. Loglio, R. Miller, (2004), "Dynamic Surface Properties of Sodium Poly(styrenesulfonate) Solutions", Macromolecules, 37, DOI: 10.1021/ma030319e, pp. 2519-2526.
[11]  
V.B. Fainerman, S.A. Zholob, M. Leser, M. Michel, R. Miller, (2004), "Competitive adsorption from mixed non-ionic surfactant/protein solutions", Journal of Colloid and Interface Science, 274, 2, pp. 496-501.
[12]  
V.B. Fainerman, V.I. Kovalchuk, E.V. Aksenenko, M. Michel, M.E. Leser, R. Miller, (2004), "Models of twodimensional solution assuming the internal compressibility of adsorbed molecules: a comparative analysis", Journal of Chemical Physics, 108, 36, DOI: 10.1021/jp049120+, pp. 13700-13705.
[13]  
R. Miller, V.B. Fainerman, E.V. Aksenenko, (2004), "A simple method to estimate the dynamic surface pressure of surfactant mixtures", Colloids & Surfaces A, 242, 1-3, doi:10.1016/j.colsurfa.2004.04.060, pp. 123-128.
[14]  
V.I. Kovalchuk, G. Loglio, V.B. Fainerman, R. Miller, (2004), "Interpretation of surface dilational elasticity data based on an intrinsic two-dimensional interfacial compressibility model", Journal of Colloid and Interface Science, 270, 2, pp. 475-482.
[15]  
A. Audibert, C. Dalmazzone, D. Dalmazzone, C. Dewattines, (2004), "Special non polluting emulsifier for non aqueous drillings fluids in deep offshore drilling", SPE Paper n° 89989, In Proceedings SPE ATCE 2004, 26-29 September 2004, Houston (Tx, USA).
[16]  
C. Stubenrauch, R. Miller, (2004), "Stability of foam films and surface rheology: An oscillating bubble study at low frequencies", Journal of Chemical Physics, 108, 20, DOI: 10.1021/jp049694e, pp. 6412-6421.
[17]  
V. Cuny, M. Antoni, M. Arbelot, L. Liggieri, (2004), "Numerical analysis of non ionic surfactant monolayers at water/air interfaces", Journal of Chemical Physics, 1008, 35, DOI: 10.1021/jp0494741, pp. 13353-13363.
[18]  
N. Mishchuk, A. Sanfeld, A. Steinchen, (2004), "Inter-particle interactions in concentrate Water-Oil emulsions", Advances in Colloid and Interface Science, 112, 1-3, pp. 129-157.
[19]  
M. Ferrari, F. Ravera, L. Liggieri, H. Motschmann, Z. Yi, J. Kraegel, R. Miller, (2004), "Adsorption and surface rheology of n-dodecanol at the water/air interface", Journal of Colloid and Interface Science, 272, 2, pp. 277-280.
[20]  
V.I. Kovalchuk, J. Krägel, A.V. Makievski, F. Ravera, L. Liggieri, G. Loglio, V.B. Fainerman, R. Miller, (2004), "Rheological surface properties of C12DMPO solution as obtained from amplitude- and phase-frequency characteristics of an oscillating bubble system", Journal of Colloid and Interface Science, 280, 2, pp. 498-505.
[21]  
D. Daniel-David, I. Pezron, D. Clausse, C. Dalmazzone, C. Noik, L. Komunjer, (2004), "Interfacial Properties of a Silicone Copolymer Demulsifier at the air/water Interface", Physical Chemistry - Chemical Physics, 6, DOI: 10.1039/B314301P, pp. 1570-1574.
[22]  
M. Ferrari, F. Ravera, M. Viviani, L. Liggieri, (2004), "Characterisation of Surfactant Aggregates at Solid-Liquid Surfaces by Atomic Force Microscopy", Colloids and Surfaces A, 249, 1-3, doi:10.1016/j.colsurfa.2004.08.052, pp. 63-67.
[23]  
C. Stubenrauch, V.B. Fainerman, E.V. Aksenenko, R. Miller, (2005), "Adsorption behaviour and dilational rheology of the cationic alkyl trimethylammonium bromides at the water/air interface", Journal of Physical Chemistry B, 109, 4, pp. 1505-1509.
[24]  
J. Schulze-Schlarmann, C. Stubenrauch, R. Miller, (2005), "Revision of the adsorption behaviour of the non-ionic surfactant tetraoxyethylene decylether C10E4 at the water/air interface", Tenside Surfactants Detergents, 42, pp. 307.
[25]  
A. Sanfeld, A. Steinchen, N. Mishchuk, (2005), "Energy barrier in dense W/O emulsions", Colloids and Surfaces A, 201, 1-3, pp. 101-107.
[26]  
V.I. Kovalchuk, R. Miller, V.B. Fainerman, G. Loglio, (2005), "Dilational rheology of adsorbed surfactant layers - role of the intrinsic two-dimensional compressibility", Advances in Colloid and Interface Science, 114-115, pp. 303-312.
[27]  
G. Loglio, P. Pandolfini, R. Miller, A.V. Makievski, J. Krägel, F. Ravera, B.A. Noskov, (2005), "Perturbation-response relationship in liquid interfacial systems: non-linearity assessment by frequency-domain analysis", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 261, 1-3, DOI: 10.1016/j.colsurfa.2004.10.130, pp. 57-63.
[28]  
L. Liggieri, F. Ravera, M. Ferrari, A. Passerone, (2005), "Adsorption Properties of C10E8 at Water/Hexane Interfaces investigated onboard STS-107, by the FAST facility", Microgravity Science and Technology Journal, 16, doi:10.1016/j.colsurfa.2004.10.130, pp. 201-204.
[29]  
B.A. Noskov, A.V. Akentiev, D.O. Grigoriev, G. Loglio, R. Miller, (2005), "Ellipsometric study of non-ionic polymer solutions", Journal of Colloid and Interface Science, 282, 1, pp. 38-45.
[30]  
M. Safouane, R. Miller, H. Möhwald, (2005), "Surface viscoelastic properties of floating polyelectrolyte multilayers films: a capillary wave study", Journal of Colloid and Interface Science, 292, doi:10.1016/j.jcis.2005.05.061, pp. 86-92.
[31]  
R. Miller, V.B. Fainerman, V.I. Kovalchuk, G. Loglio, (2005), "Dilational Surface Rheology of Adsorbed Surfactant Layers", conference: Surfactants and Disperse Systems in Theory and Practice, Polanica Zdrój, 31 May - 04 June 2005, K.A. Wilk, ISBN 83-920032-3-3, pp. 71-78.
[32]  
B.A. Noskov, A.V. Akentiev, A.Y. Bilibin, D.O. Grigoriev, G. Loglio, I.M. Zorin, R. Miller, (2005), "Adsorption kinetics of non-ionic polymers: an ellipsometric study", Mendeleev Communications, 15, 5, doi:10.1070/MC2005v015n05ABEH002040, pp. 198-200.
[33]  
B.A. Noskov, G. Loglio, R. Miller, (2005), "Interaction between sodium poly(styrene sulfonate) and dodecyltrimethylammonium bromide at the air/water interface", Mendeleev Communications, 15, 2, doi:10.1070/MC2005v015n02ABEH002001, pp. 63-65.
[34]  
J. Maldonado-Valderrama, M.J. Gálvez-Ruiz, A. Marín-Rodriguez, M.A. Cabrerizo-Vílchez, V.B. Fainerman, R. Miller, (2005), "Dilatational rheology of beta-casein adsorbed layers at liquid-fluid interfaces", Journal of Physical Chemistry B, 109, 37, pp. 17608-17616.
[35]  
J. Maldonado-Valderrama, V.B. Fainerman, E.V. Aksenenko, R. Miller, M.J. Gálvez-Ruiz, A. Martín-Rodriguez, M.A. Cabrerizo-Vílchez, (2005), "Dynamics of Protein Adsorption at the Oil-Water Interface: Comparison with a Theoretical Model", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 261, 1-3, doi:10.1016/j.colsurfa.2004.10.131, pp. 85-92.
[36]  
V.I. Kovalchuk, A.V. Makievski, J. Krägel, P. Pandolfini, G. Loglio, L. Liggieri, F. Ravera, (2005), "Film tension and dilational film rheology of a single foam bubble", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 261, 1-3, doi:10.1016/j.colsurfa.2004.12.051, pp. 115-121.
[37]  
V.I. Kovalchuk, R. Miller, V.B. Fainerman, G. Loglio, (2005), "Oscillating bubble pressure experiments for dilational rheology studies", Advances in Colloid and Interface Science, 114-115, pp. 303-313.
[38]  
M.E. Leser, S. Acquistapace, A. Cagna, A.V. Makievski, R. Miller, (2005), "Limits of oscillation frequencies in drop and bubble shape tensiometry", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 261, 1-3, doi:10.1016/j.colsurfa.2004.11.043, pp. 25-28.
[39]  
A.V. Makievski, V.I. Kovalchuk, J. Krägel, M. Simoncini, L. Liggieri, M. Ferrari, P. Pandolfini, G. Loglio, R. Miller, "Rheological studies with spherically shaped thin liquid films", Microgravity Science and Technology, 16, 1-4, DOI: 10.1007/BF02945979, pp. 215-218.
[40]  
G. Loglio, P. Pandolfini, R. Miller, A. Makievski, J. Krägel, F. Ravera, L. Liggieri, (2005), "STS-107 OV-102 Mission - FAST Experiment: slow surface relaxation at the solution-air interface", Microgravity Science and Technology, 16, 1-4, DOI: 10.1007/BF02945977, pp. 205-209.
[41]  
L. Liggieri, F. Ravera, M. Ferrari, A. Passerone, G. Loglio, R. Miller, J. Krägel, A.V. Makievski, (2005), "Preliminary results of the Facility for Adsorption and Surface Tension (FAST) experiments onboard STS-107, in the framework of the project", Microgravity Science and Technology, 16, pp. 196-200.
[42]  
D. Clausse, F. Gomez, I. Pezron, L. Kounjer, C. Dalmazzone, (2005), "Morphology characterization of emulsions by differential scanning calorimetry", Advances in Colloid and Interface Science, 117, 1-3, pp. 59-74.
[43]  
D. Clausse, F. Gomez, C. Dalmazzone, C. Noik, (2005), "A method for the characterization of emulsions, thermogranulometry Application to water-in-crude oil emulsion", Journal of Colloid and Interface Science, 287, 2, pp. 694-703.
[44]  
J.R. Aavendano-Gomez, J.L. Grossiord, D. Clausse, (2005), "Study of mass transfer in oil-water-oil multiple emulsions by differential scanning calorimetry", Journal of Colloid and Interface Science, 290, 2, pp. 533-545.
[45]  
F. Ravera, M. Ferrari, E. Santini, L. Liggieri, (2005), "Influence of surface processes on the dilational viscoelasticity of surfactant solutions", Advances in Colloid and Interface Science, 117, 1-3, pp. 75-100.
[46]  
D. Daniel-David, I. Pezron, C. Dalmazzone, C. Noik, D. Clausse, L. Komunjer, (2005), "Elastic properties of crude oil / water interface in presence of polymeric emulsion breakers", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 270-271, doi:10.1016/j.colsurfa.2005.06.010, pp. 257-262.
[47]  
J. Krägel, V.I. Kovalchuk, A.V. Makievski, M. Simoncini, F. Ravera, L. Liggieri, G. Loglio, R. Miller, (2005), "Analysis of amplitude- and phase-frequency characteristics of oscillating bubble system with closed measuring cell", Microgravity Science and Technology, 16, 1-4, DOI: 10.1007/BF02945973, pp. 186-190.
[48]  
L. Liggieri, M. Ferrari, D. Mondelli, F. Ravera, (2005), "Surface rheology as a tool for the investigation of processes internal to surfactant adsorption layers", Faraday Discussions, 129, DOI: 10.1039/B405538A, pp. 125-140.
[49]  
C. Noik, C. Dalmazzone, L. Komunjer, (2005), "Mechanism of crude oil/water interface destabilization by silicone demulsifiers", SPE Journal - paper n°80241, 10, 1, DOI: 10.2118/80241-PA, pp. 44-53.
[50]  
L. Liggieri, F. Ravera, M. Ferrari, A. Passerone, G. Loglio, P. Pandolfini, A. Steinchen, A. Sanfeld, M. Antoni, D. Clausse, L. Komunjer, F. Gomez, R. Miller, A. Makievski, J. Krägel, V.I. Kovalchuk, C. Noik, C. Dalmazzone, L. Del Gaudio, A. Di Lullo, (2005), "Microgravity as a Tool for Fundamental and Applied Studies on Emulsion Stability", ISBN 92-9092-971-5, A. Wilson, European Space Agency, pp. 150-167.
[51]  
R. Miller, M.E. Leser, M. Michel, V.B. Fainerman, (2005), "Surface dilational rheology of mixed beta-lactoglobulin/surfactant adsorption layers at the air/water interface", Journal of Physical Chemistry, 109, 27, DOI: 10.1021/jp0510589, pp. 13327-13331.
[52]  
B.A. Noskov, G. Loglio, S.Y. Lin, R. Miller, (2006), "Dynamic surface elasticity of polyelectrolyte/surfactant adsorption films at the air/water interface: Dodecyltrimethylammonium bromide and copolymer of sodium 2-acrylamido-2-methyl-1-propansulfonate with N-isopropylacrylamide", Journal of Colloid and Interface Science, 301, 2, doi:10.1016/j.jcis.2006.05.023, pp. 386-394.
[53]  
R. Miller, D.O. Grigoriev, J. Krägel, A.V. Makievski, L. Liggieri, F. Ravera, M. Ferrari, E. Santini, G. Loglio, T. Karapantsios, (2006), "The Project", Microgravity Science and Technology, 18, 3-4, DOI: 10.1007/BF02870390.
[54]  
B.A. Noskov, A.Y. Bilibin, A.V. Lezov, G. Loglio, S.K. Filippov, I.M. Zorin, R. Miller, (2006), "Dynamic surface elasticity of polyelectrolyte solutions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298, 1-2, doi:10.1016/j.colsurfa.2006.12.003, pp. 115-122.
[55]  
M.E. Leser, J.B. Bezelgues, S. Serieye, P. Frossard, S. Acquistapatce, C. Appolonia-Nouzille, D.O. Grigoriev, R. Miller, (2006), "Making Good Foams and Emulsions - The Role of Adsorption Layer Properties", Proceedings 4th International Symposium on Food Rheology and Structure, P. Fischer, P. Erni, E.J. Windhab, pp. 281-285.
[56]  
M. Antoni, J. Krägel, L. Liggieri, R. Miller, A. Sanfeld, J.D. Sylvain, "Optical tomographic microscopy as a tool for binary emulsions investigation in FASES experiments", Proceedings of the 4th World Emulsion Congress, Lyon 2006.
[57]  
L. Del Gaudio, P. Pandolfini, F. Ravera, J. Kraegel, E. Santini, A.V. Makievski, E. Vignati, L. Liggieri, R. Miller, G. Loglio, "Dynamic interfacial properties of droplets relevant to W/O-emulsion-forming systems", Proceedings of the 4th World Emulsion Congress, Lyon 2006.
[58]  
B. Fouconnier, L. Komunjer, M. Ollivon, P. Lesieur, G. Keller, D. Clausse, (2006), "Study of CCL3F hydrate formation and dissociation in W/O emulsion by differential scanning calorimetry and X-ray diffraction", Fluid Phase Equilibria, 250, 1-2, doi:10.1016/j.fluid.2006.10.006.
[59]  
B.A. Noskov, G. Loglio, (2006), "Multiple scattering of surface waves by two-dimensional colloid systems", Marine Surface Films - Chemical Characteristics, Influence on Air-Sea Interactions and Remote Sensing, 9783540332701, M. Gade, H. Hühnerfuss, G. Korenowski, Springer, Berlin Heidelberg New York, pp. 105-112.
[60]  
L. Liggieri, F. Ravera, M. Ferrari, E. Santini, G. Loglio, R. Miller, D.O. Grigoriev, "Adsorption and Surface Dilational Rheology of Liquid_Liquid Interfaces with Surfactants and nanoparticles", Proceedings of the 4th World Emulsion Congress, Lyon 2006.
[61]  
F. Ravera, M. Ferrari, L. Liggieri, (2006), "Modelling of dilational visco-elasticity of adsorbed layers with multiple kinetic processes", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282-283, pp. 210-216.
[62]  
E.V. Aksenenko, V.I. Kovalchuk, V.B. Fainerman, R. Miller, (2006), "Surface dilational rheology of mixed adsorption layers at liquid interfaces", Advances in Colloid and Interface Science, 122, 1-3, doi:10.1016/j.cis.2006.06.012, pp. 57-66.
[63]  
R. Miller, V.B. Fainerman, V.I. Kovalchuk, D.O. Grigoriev, M.E. Leser, M. Michel, (2006), "Composite interfacial layers containing micro-size and nano-size particles", Advances in Colloid and Interface Science, 128-130, doi:10.1016/j.cis.2006.11.004, pp. 17-26.
[64]  
A.V. Makievski, J. Krägel, P. Pandolfini, G. Loglio, L. Liggieri, F. Ravera, E. Santini, M.E. Leser, M. Michel, R. Miller, (2006), "Dynamic Interfacial Tensions in the Short Time Range by Applying a Fast Capillary Pressure Technique", Microgravity Science and Technology, 18, pp. 108-111.
[65]  
L. Liggieri, F. Ravera, M. Ferrari, A. Passerone, G. Loglio, R. Miller, A.V. Makievski, J. Krägel, (2006), "Results of Microgravity Investigation on Adsorption and Interfacial Rheology of Soluble Surfactants from the Experiment Fast", Microgravity Science and Technology, 18, 112-116.
[66]  
F. Ravera, E. Santini, G. Loglio, M. Ferrari, L. Liggieri, (2006), "Effect of Nanoparticles on Interfacial Properties of Liquid-Liquid and Liquid-Air Systems", Journal of Physical Chemistry, 110, 39, DOI: 10.1021/jp0636468, pp. 19543-19551.
[67]  
V.B. Fainerman, V.I. Kovalchuk, D. Grigoriev, M.E. Leser, R. Miller, (2006), "Theoretical analysis of surface pressure of monolayers formed by nano-particles", Surface chemistry in biomedical and environmental science - NATO science series : Ser. 2, Mathematics, Physics and Chemistry, 228, Springer-Verlag, pp. 79-90.
[68]  
B.A. Noskov, S.Y. Lin, G. Loglio, R.G. Rubio, R. Miller, (2006), "Dilational Viscoelasticity of PEO-PPO-PEO Triblock Copolymer Films at the Air-Water Interface in the Range of High Surface Pressures", Langmuir, 22, 6, pp. 2647-2652.
[69]  
V.B. Fainerman, S. Lylyk, J.K. Ferri, R. Miller, H. Watzke, M.E. Leser, M. Michel, (2006), "Adsorption kinetics of proteins at the solution air interfaces with controlled bulk convection", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282-283, doi:10.1016/j.colsurfa.2005.09.019, pp. 217-221.
[70]  
V.B. Fainerman, R. Miller, J.K. Ferri, H. Watzke, M.E. Leser, M. Michel, (2006), "Reversibility and irreversibility of adsorption of surfactants and proteins at liquid interfaces", Advances in Colloid and Interface Science, 123-126, pp. 163-171.
[71]  
V.B. Fainerman, V.I. Kovalchuk, E.H. Lucassen-Reynders, D.O. Grigoriev, J.K. Ferri, M.E. Leser, M. Michel, R. Miller, H. Möhwald, (2006), "Surface pressure isotherms of monolayers formed by microsize and nanosize particles", Langmuir, 22, 4, pp. 1701-1705.
[72]  
N. Buchavzov, F. Ravera, S. Hess, S.Y. Lin, U. Steinbrenner, C. Stubenrauch, (2007), "Interfacial tensions, partition coefficients, and interfacial elasticities: Measures for emulsion stability?", Tenside Surfactants Detergents, 44, pp. 230.
[73]  
E. Santini, F. Ravera, M. Ferrari, C. Stubenrauch, A. Makievski, J. Krägel, (2007), "A surface rheological study of non-ionic surfactants at the water-air interface and the stability of the corresponding thin foam films", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298, 1-2, doi:10.1016/j.colsurfa.2006.12.004, pp. 12-21.
[74]  
D. Clausse, D. Daniel-David, F. Gomez, L. Komunjer, I. Pezron, C. Dalmazzone, C. Noik, (2007), "Emulsion stability and interfacial properties: application to complex emulsions of industrial interest", Colloid Stability and Application in Pharmacy, 3, T. Tadros, Wiley-VCH, pp. 119-149.
[75]  
M. Antoni, J. Krägel, L. Liggieri, R. Miller, A. Steinchen, J.D. Sylvain, (2007), "Binary emulsion investigation by optical tomographic microscopy for FASES experiments", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 309, 1-3, DOI: https://doi.org/10.1016/j.colsurfa.2007.02.043, pp. 280-285.
[76]  
D. Grigoriev, R. Miller, D. Shchukin, H. Möhwald, (2007), "Interfacial Assembly of Partially Hydrophobic Silica Nanoparticles Induced by Ultrasonic Treatment", Small, 3, pp. 665-671.
[77]  
M. Stambouli, J.R. Avendano-Gomez, I. Pezron, D. Pareau, D. Clausse, J.L. Grossiord, (2007), "Modelisation of the release from a tetradecane/water/hexadecane multiple emulsion: evidence of significant micellar diffusion", Langmuir, 23, 3, pp. 1052-1056.
[78]  
E. Santini, L. Liggieri, L. Sacca, D. Clausse, F. Ravera, (2007), "Interfacial rheology of Span 80 adsorbed layers at paraffin oil-water interface and correlation with the corresponding emulsions properties", Colloids and Surfaces. A, Physicochemical and engineering aspects, 309, 1-3, doi:10.1016/j.colsurfa.2006.11.041, pp. 270-279.
[79]  
X. Zabulis, M. Papara, A. Chatziargyriou, T.D. Karapantsios, (2007), "Detection of densely dispersed spherical bubbles in digital images based on a template matching technique. Application to wet foam", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 309, 1-3, DOI: 10.1016/j.colsurfa.2007.01.007, pp. 96-106.
[80]  
L.J. Bonales, H. Ritacco, J.E.F. Rubio, R.G. Rubio, F. Monroy, F. Ortega, (2007), "Dynamics in ultrathin films: Particle tracking microrheology of Langmuir monolayers", The Open Physical Chemistry Journal, 1, 1, DOI: 10.2174/1874067700701010025, pp. 25-32.
[81]  
A.M. Díez-Pascual, A. Compostizo, A. Crespo-Colín, R.G. Rubio, (2007), "Bulk and interfacial properties of a cationic micellar system near the critical point", Chemical Physics, 335, 2-3, doi:10.1016/j.chemphys.2007.04.004, pp. 124-132.
[82]  
A.M. Díez-Pascual, F. Monroy, F. Ortega, R.G. Rubio, R. Miller, B.A. Noskov, (2007), "Adsorption of watersoluble polymers with surfactant character. Dilational viscoelasticity", Langmuir, 23, pp. 3802-3808.
[83]  
H.M. Hilles, A. Maestro, F. Monroy, F. Ortega, R.G. Rubio, M.G. Velarde, (2007), "Polymer Monolayers with a Small Linear Regime: Equilibrium and Rheology of Poly(octadecyl acrylate) and Poly(vinyl stearate)", Journal of Chemical Physics, 126, 12, pp. 124904-1 - 124904-10.
[84]  
A.M. Díez-Pascual, A. Compostizo, A. Crespo-Colín, R.G. Rubio, R. Miller, (2007), "Adsorption of watersoluble polymers with surfactant character. Adsorption kinetics and equilibrium properties", Journal of Colloid and Interface Science, 307, 2, doi:10.1016/j.jcis.2006.11.056, pp. 398-404.
[85]  
V. Dutschk, K.W. Stöckelhuber, V. Albrecht, U. Geißler, F. Simon, G. Petzold, K. Bellmann, "Differently modified synthetic alumina particles as stabilizer of w/o emulsions: surface properties and dispersing mechanisms", Proceedings of PARTEC2007, 27 - 29 March 2007, Nuremberg.
[86]  
F. Monroy, F. Ortega, R.G. Rubio, M.G. Velarde, (2007), "Surface rheology, equilibrium and dynamic features at interfaces, with emphasis on efficient tools for probing polymer dynamics at interfaces", Advances in Colloid and Interface Science, 134-135, pp. 175-189.
[87]  
B.A. Noskov, A.V. Latnikova, S.Y. Lin, G. Loglio, R. Miller, (2007), "Dynamic Surface Elasticity of beta-Casein Solutions in the Course of Adsorption Process", Journal of Physical Chemistry, 111, 45, DOI: 10.1021/jp073813j, pp. 16895–16901.
[88]  
D.O. Grigoriev, J. Krägel, V. Dutschk, R. Miller, H. Möhwald, (2007), "Contact angle determination of micro- and nanoparticles at fluid/fluid interfaces: the excluded area concept", Physical Chemistry Chemical Physics, 9, 48, pp. 6447-6454.
[89]  
E.V. Aksenenko, V.I. Kovalchuk, V.B. Fainerman, R. Miller, (2007), "Surface Dilational Rheology of Mixed Surfactant Layers at Liquid Interfaces", Journal of Physical Chemistry C, 111, 40, DOI: 10.1021/jp073904g, pp. 14713-14719.
[90]  
B.A. Noskov, D.O. Grigoriev, S.Y. Lin,, G. Loglio, R. Miller, (2007), "Dynamic Surface Properties of Polyelectrolyte/Surfactant Adsorption Films at the Air/Water Interface:Poly(diallyldimethylammonium Chloride) and Sodium Dodecylsulfate", Langmuir, 23, 19, pp. 9641-9651.
[91]  
D.O. Grigoriev, S. Derkatch, J. Krägel, R. Miller, (2007), "Relationship between structure and rheological properties of mixed BSA/Tween 80 adsorption layers at the air/water interface", Food Hydrocolloids, 21, 5-6, doi:10.1016/j.foodhyd.2006.08.018, pp. 823-830.
[92]  
V.B. Fainerman, A.V. Makievski, J. Krägel, A. Javadi, R. Miller, (2007), "Studies of the rate of water evaporation through adsorption layers using drop shape analysis tensiometry", Journal of Colloid and Interface Science, 308, 1, pp. 249-253.
[93]  
D.O. Grigoriev, R. Miller, D.G. Shchukin, H. Möhwald, (2007), "Interfacial Assembly of Partially Hydrophobic Silica Nanoparticles Induced by Ultrasound", Small, 3, 4, pp. 665-671.
[94]  
S.A. Zholob, A.V. Makievski, R. Miller, V.B. Fainerman, (2007), "Optimisation of calculation methods for determination of surface tensions by drop profile analysis tensiometry", Advances in Colloid and Interface Science, 134-135, doi:10.1016/j.cis.2007.04.011, pp. 322-329.
[95]  
B.A. Noskov, A.Y. Bilibin, A.V. Lezov, G. Loglio, S.K. Filippov, I.M. Zorin, R. Miller, (2007), "Dynamic surface elasticity of polyelectrolyte solutions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298, 1-2, doi:10.1016/j.colsurfa.2006.12.003, pp. 115-122.
[96]  
A.E. Yakuninskaya, I.M. Zorin, A.Y. Bilibin, S.Y. Lin, G. Loglio, R. Miller, B.A. Noskov, (2007), "Dynamic Properties of the Adsorption Films of the Copolymer of N-Isopropylacrylamide and Sodium 2-Acrylamide-2-Methyl-1-Propane", Colloid Journal, 69, 4, DOI: 10.1134/S1061933X07040163, pp. 530-536.
[97]  
A. Sanfeld, A. Steinchen, (2008), "Emulsion stability, from dilute to dense emulsions - Role of drops deformation", Advances in Colloid and Interface Science, 140, 1, pp. 1-65.
[98]  
V. Cuny, M. Antoni, M. Arbelot, L. Liggieri, (2008), "Structural Properties and Dynamics of C12E5 Molecules Adsorbed at Water/Air Interfaces: A Molecular Dynamic Study", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323, 1-3, doi:10.1016/j.colsurfa.2008.03.028, pp. 180-191.
[99]  
G. Petzold, V. Dutschk, M. Mende, R. Miller, (2008), "Interaction of cationic surfactant and anionic polyelectrolytes in mixed aqueous solutions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 319, 1-3, doi:10.1016/j.colsurfa.2007.06.011, pp. 43-50.
[100]  
A. Synytska, L. Ionov, V. Dutschk, M. Stamm, K. Grundke, (2008), "Wetting on regularly structured surfaces from", Langmuir, 24, 20, pp. 11895-11901.
[101]  
K.S. Lee, N. Ivanova, V.M. Starov, N. Hilal, V. Dutschk, (2008), "Kinetics of wetting and spreading by aqueous surfactant solutions", Advances in Colloid and Interfaces Science, 144, 1-2, pp. 54-56.
[102]  
T.D. Karapantsios, M. Papara, (2008), "On the Design of Electrical Conductance Probes for Foam Drainage Applications. Assessment of Ring Electrodes Performance and Bubble Size Effects on Measurements", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323, 1-3, pp. 139-148.
[103]  
A. Steinchen, (2008), "From dispersed nano-objects to solutions - A thermodynamic approach", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323, 1-3, doi:10.1016/j.colsurfa.2007.06.009, pp. 163-166.
[104]  
J. Krägel, S.R. Derkatch, R. Miller, (2008), "Interfacial Shear Rheology of Protein-Surfactant Layers", Advances in Colloid and Interface Science, 144, 1-2, doi:10.1016/j.cis.2008.08.010, pp. 38-53.
[105]  
V.B. Fainerman, J.T. Petkov, R. Miller, (2008), "Surface dilational visco-elasticity of C14EO8 micellar solution studied by bubble profile analysis tensiometry", Langmuir, 24, 13, pp. 6447-6452.
[106]  
A.V. Latnikova, S.Y. Lin, G. Loglio, R. Miller, B.A. Noskov, (2008), "Impact of Surfactant Additions on Dynamic Properties of beta-Casein Adsorption Layers", Journal of Physical Chemistry, 112, 15, DOI: 10.1021/jp712107n, pp. 6126-6131.
[107]  
J. Banhart, F. García-Moreno, S. Hutzler, D. Langevin, L. Liggieri, R. Miller, A. Saint-Jalmes, D. Weaire, (2008), "Foams and emulsions in space", Europhysics News, 39, 4, DOI: 10.1051/epn:2008402, pp. 26-28.
[108]  
B.A. Noskov, A.G. Bykov, D.O. Grigoriev, S.Y. Lin, G. Loglio, R. Miller, (2008), "Dilational Viscoelasticity of Polyelectrolyte/Surfactant Adsorption Layers at the Air/Water Interface: Poly(vinyl pyridinium chloride) and Sodium Dodecylsulfate", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322, pp. 71.
[109]  
R. Miller, B.A. Noskov, V.B. Fainerman, J.G. Petkov, (2008), "Impact of micellar kinetics on dynamic interfacial properties of surfactant solutions", Highlights in Colloid Science, DOI: 10.1002/9783527623884.ch13, D. Platikanov, D. Exerowa, Wiley-VHC, pp. 247-259.
[110]  
V.B. Fainerman, R. Miller, (2008), "Chemical potentials and equation of state of surface layers for a model assuming two-dimensional compressibility of adsorbed molecules", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 319, 1-3, doi:10.1016/j.colsurfa.2007.05.032, pp. 8-12.
[111]  
S.S. Dukhin, V.I. Kovalchuk, E.V. Aksenenko, R. Miller, (2008), "Surfactant accumulation within the top foam layer due to rupture of external foam films", Advances in Colloid and Interfaces Science, 137, 1, pp. 45-56.
[112]  
L. Sacca, A. Drelich, F. Gomez, I. Pezron, D. Clausse, (2008), "Composition ripening in mixed water-in-oil emulsions stabilized with solid particles", Journal of Dispersion Science and Technology, 29, 7, DOI: 10.1080/01932690701808395, pp. 948-952.
[113]  
J.K. Ferria, N. Gorevskia, C. Kotsmarb, M.E. Leser, R. Miller, (2008), "Desorption Kinetics of Surfactants at Fluid Interfaces by Novel Coaxial Capillary Pendant Drop Experiments", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 319, 1-3, doi:10.1016/j.colsurfa.2007.07.037, pp. 13-20.
[114]  
D. Clausse, I. Pezron, F. Gomez, C. Dalmazzone, L. Sacca, A. Drelich, (2008), "Differential Scanning Calorimetry as a tool for following emulsion evolution in microgravity conditions from the MAP-Project FASES", Journal of the Japan Society of Microgravity Application, 25, pp. 227-230.
[115]  
A.G. Bykov, S.Y. Lin, G. Loglio, R. Miller, B.A. Noskov, (2008), "Viscoelasticity of poly(vinylpyridinium chloride)/sodium dodecylsulfate adsorption films at the air-water interface", Mendeleev Communications, 18, 6, doi:10.1016/j.mencom.2008.11.021, pp. 342-344.
[116]  
F. Ravera, M. Ferrari, L. Liggieri, G. Loglio, E. Santini, A. Zanobini, (2008), "Liquid-liquid interfacial properties of mixed nanoparticle-surfactant systems", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323, 1-3, doi:10.1016/j.colsurfa.2007.10.017, pp. 99-108.
[117]  
L. Del Gaudio, P. Pandolfini, F. Ravera, J. Krägel, E. Santini, A.V. Makievski, B.A. Noskov, L. Liggieri, R. Miller, G. Loglio, (2008), "Dynamic interfacial properties of drops relevant to W/O-emulsion forming systems. A refined measurement apparatus", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323, 1-3, doi:10.1016/j.colsurfa.2007.09.011, pp. 3-11.
[118]  
D. Daniel-David, A. Le Follotec, I. Pezron, C. Dalmazzone, C. Noïk, L. Barré, L. Komunjer, (2008), "Destabilisation of Water-in-Crude Oil Emulsions by Silicone Copolymer Demulsifiers, Oil & Gas Science and Technology", Revue d´IFP Energies nouvelles, 63, pp. 165-173.
[119]  
B. Miranda, H. Hilles, R.G. Rubio, H. Ritacco, D. Radic, L. Gargallo, M. Sferrazza, F. Ortega, (2009), "Equilibrium and Surface rheology of monolayers of insoluble polycations with side chains", Langmuir, 25, 21, DOI: 10.1021/la901762u, pp. 12561-12568.
[120]  
F. Monroy, F. Ortega, R.G. Rubio, B.A. Noskov, (2009), "Surface rheology studies of spread and adsorbed polymer layers. In Interface Rheology", R. Miller, L. Liggieri, Brill, Amsterdam.
[121]  
A. Maestro, F. Ortega, F. Monroy, J. Krägel, R. Miller, (2009), "Molecular weight dependence of the shear rheology of poly(methyl methacrylate) Langmuir films: A comparison between two different rheometry techniques", Langmuir, 25, 13, pp. 7393-7400.
[122]  
H.M. Hilles, H. Ritacco, F. Monroy, F. Ortega, R.G. Rubio, (2009), "Temperature and concentration effects on the equilibrium and dynamic behaviour of a Langmuir monolayer: From fluid to gel-like behaviour", Langmuir, 25, 19, DOI: 10.1021/la9014515, pp. 11528-11532.
[123]  
E. Guzmán, H. Ritacco, F. Ortega, T. Svitova, C.J. Radke, R.G. Rubio, (2009), "Adsorption kinetics and mechanical properties of ultrathin polyelectrolyte multilayers: Liquid-supported versus solid-supported films", Journal of Physical Chemistry B, 113, 20, DOI: 10.1021/jp811178a, pp. 7128-7137.
[124]  
V.B. Fainerman, A.V. Mys, E.V. Aksenenko, A.V. Makievski, J.T. Petkov, J. Yorke, R. Miller, (2209), "Adsorption layer characteristics of Triton surfactants 4. Dynamic surface tension and dilational visco-elasticity of micellar solutions,", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 334, 1-3, doi:10.1016/j.colsurfa.2008.10.032, pp. 22-27.
[125]  
V.B. Fainerman, S.V. Lylyk, E.V. Aksenenko, A.V. Makievski, J.T. Petkov, J. Yorke, R. Miller, (2009), "Adsorption layer characteristics of Triton surfactants 1. Surface tension and adsorption isotherms", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 334, 1-3, doi:10.1016/j.colsurfa.2008.09.015, pp. 1-7.
[126]  
V.B. Fainerman, E.V. Aksenenko, S.V. Lylyk, A.V. Makievski, F. Ravera, J.T. Petkov, J. Yorke, R. Miller, (2009), "Adsorption layer characteristics of Tritons surfactants 3. Dilational visco-elasticity", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 334, pp. 16-21.
[127]  
V.B. Fainerman, S.V. Lylyk, A.V. Aksenenko, L. Liggieri, A.V. Makievski, J.T. Petkov, J. Yorke, R. Miller, (2009), "Adsorption layer characteristics of Triton surfactants Part 2. Dynamic surface tension and adsorption", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 334, 1-3, doi:10.1016/j.colsurfa.2008.09.052, pp. 8-15.
[128]  
C. Kotsmar, V. Pradines, V.S. Alahverdjieva, E.V. Aksenenko, V.B. Fainerman, V.I. Kovalchuk, J. Krägel, M.E. Leser, R. Miller, (2009), "Thermodynamics, adsorption kinetics and rheology of mixed protein-surfactant interfacial layers", Advances in Colloid and Interface Science, 150, 1, DOI: 10.1016/j.cis.2009.05.002, pp. 41-54.
[129]  
A. Javadi, D. Bastani, J. Krägel, R. Miller, (2009), "Interfacial instability of growing drop: Experimental study and conceptual analysis", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 1-3, doi:10.1016/j.colsurfa.2009.04.001, pp. 167-174.
[130]  
V.I. Kovalchuk, J. Krägel, P. Pandolfini, G. Loglio, L. Liggieri, F. Ravera, A.V. Makievski, R. Miller, (2009), "Dilatational Rheology of Thin Liquid Films", in Interfacial Rheology, Vol. 1 - Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 476-518.
[131]  
F. Monroy, F. Ortega, R.G. Rubio, B.A. Noskov, (2009), "Surface Rheology Studies of Spread and Adsorbed Polymer Layers", in Interfacial Rheology, Vol. 1 - Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 179-253.
[132]  
(2009), "Interfacial Shear Rheology - An Overview of Measuring Techniques and their Applications", in Interfacial Rheology, Vol. 1, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden.
[133]  
V.I. Kovalchuk, E.V. Aksenenko, R. Miller, V.B. Fainerman, (2009), "Surface Dilational Rheology of Mixed Adsorption Layers of Proteins and Surfactant at Liquid Interfaces", in Interfacial Rheology, Vol. 1, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 332-371.
[134]  
S.S. Dukhin, V.I. Kovalchuk, E.V. Aksenenko, L. Liggieri, G. Loglio, R. Miller, (2009), "Influence of surface rheology on particle-bubble interactions in flotation", in Interfacial Rheology, Vol. 1, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 567-613.
[135]  
M. Papara, X. Zabulis, T.D. Karapantsios, (2009), "Container Effects on the Free Drainage of Wet Foams", Chemical Engineering Science, 64, 7, doi:10.1016/j.ces.2008.11.021, pp. 1404-1415.
[136]  
C. Dalmazzone, C. Noïk, D. Clausse, (2009), "Application of DSC for Emulsified System Characterization, Oil & Gas Science and Technology", Revue d´IFP Energies nouvelles, 64, pp. 543-555.
[137]  
F. Ravera, L. Liggieri, G. Loglio, (2009), "Dilational Rheology of Adsorbed Layers by Oscillating Drops and Bubbles", in Interfacial Rheology, Vol. 1, Progress in Colloid and Interface Science, L. Liggieri, R. Miller, Brill, Amsterdam; ISSN: 1877-8569, E-ISSN: 1877-8577.
[138]  
L. Komunjer, M. Ollivon, B. Fouconnier, A.T. Fouconnier, I. Pezron, D. Clausse, (2009), "Influence of sodium chloride on the melting of ice and crystallization and dissociation of CCl3F hydrate in water in oil emulsion", Journal of Thermal Analysis and Calorimetry, 98, 1, DOI: 10.1007/s10973-009-0227-9, pp. 125-131.
[139]  
B.A. Noskov, D.O. Grigoriev, A.V. Latnikova, S.Y. Lin, G. Loglio, R. Miller, (2009), "Impact of globule unfolding on dilational viscoelasticity of beta-lactoglobulin adsorption layers", Journal of Physical Chemistry B, 113, 40, pp. 13398-13404.
[140]  
A.G. Bykov, S.Y. Lin, G. Loglio, R. Miller, B.A. Noskov, (2009), "Kinetics of Adsorption Layer Formation in Solutions of Polyacid/Surfactant Complexes", Journal of Physical Chemistry C, 113, 14, DOI: 10.1021/jp810471y, pp. 5664-5671.
[141]  
M. Schmitt-Rozières, J. Krägel, D. Grigoriev, L. Liggieri, R. Miller, S. Vincent-Bonnieux, M. Antoni, (2009), "From spherical to polymorphous dispersed phase transition in water/oil emulsions", Langmuir, 25, 8, DOI: 10.1021/la804214m, pp. 4266-4270.
[142]  
G. Loglio, P. Pandolfini, R. Miller, F. Ravera, (2009), "Optical Observation of High-Frequency Drop Oscillations by a Spectrum Compression Technique applied to the Capillary Pressure Tensiometry", Langmuir, 25, 21, DOI: 10.1021/la901391y, pp. 12780-12786.
[143]  
S.A. Zholob, A.V. Makievski, R. Miller, V.B. Fainerman, (2010), "Advances in calculation methods for the determination of surface tensions in drop profile analysis tensiometry", Bubble and Drop Interfaces, Vol. 2, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden.
[144]  
F. Ravera, G. Loglio, P. Pandolfini, E. Santini, L. Liggieri, (2010), "Determination of the Dilational Viscoelasticity by the Oscillating Bubble/Drop Method in a Capillary Pressure Tensiometer", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, doi:10.1016/j.colsurfa.2010.01.040, pp. 2-13.
[145]  
S. Limage, M. Schmitt, S. Vincent-Bonnieu, C. Dominici, M. Antoni, (2010), "Characterization of solid-stabilized water/oil emulsions by scanning electron microscopy", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, doi:10.1016/j.colsurfa.2010.02.037, pp. 154-161.
[146]  
E. Santini, F. Ravera, M. Ferrari, M. Alfè, A. Ciajolo, L. Liggieri, (2010), "Interfacial Properties of Carbon Particulate-Laden Liquid Interfaces and Stability of Related Foams and Emulsions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, doi:10.1016/j.colsurfa.2010.01.041, pp. 189-198.
[147]  
A. Javadi, J. Krägel, P. Pandolfini, G. Loglio, V.I. Kovalchuk, E.V. Aksenenko, F. Ravera, L. Liggieri, R. Miller, (2010), "Short Time Dynamic Interfacial Tension as Studies by the Growing Drop Capillary Pressure Technique", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, doi:10.1016/j.colsurfa.2010.01.002, pp. 62-69.
[148]  
A. Le Follotec, I. Pezron, C. Noik, C. Dalmazzone, L. Metlas-Komunjer, (2010), "Triblock copolymers as destabilizers of water-in-crude oil emulsions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, doi:10.1016/j.colsurfa.2010.02.025, pp. 162-170.
[149]  
A. Drelich, F. Gomez, D. Clausse, I. Pezron, (2010), "Evolution of water-in-oil emulsions stabilized with particles: Influence of added emulsifier", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, doi:10.1016/j.colsurfa.2010.01.042, pp. 171-177.
[150]  
A. Javadi, J.K. Ferri, T.D. Karapantsios, R. Miller, (2010), "Interface and bulk exchange: Single drops experiments and CFD simulations", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, doi:10.1016/j.colsurfa.2010.04.035, pp. 145-153.
[151]  
A.G. Bykov, S.Y. Lin, G. Loglio, V.V. Lyadinskaya, R. Miller, B.A. Noskov, (2010), "Impact of surfactant chain length on dynamic surface properties of alkyltrimethylammonium bromide/polyacrylic acid solutions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 354, 1-3, doi:10.1016/j.colsurfa.2009.09.015, pp. 382-389.
[152]  
M. Kostoglou, E.M. Varka, E. Kalogianni, T.D. Karapantsios, (2010), "Evolution of local concentrations and droplet sizes of oil during emulsion destabilization determined by a non-intrusive electrical technique", Journal of Colloid and Interface Science, 349, pp. 408-416.
[153]  
E. Varka, C. Ampatzidis, M. Kostoglou, T.D. Karapantsios, V. Dutschk, (2010), "On the use of electrical conductance measurements for the stability of oil-in-water pickering emulsions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, doi:10.1016/j.colsurfa.2010.02.017, pp. 181-188.
[154]  
E. Kalogianni, E.M. Varka, M. Kostoglou, T.D. Karapantsios, F. Ravera, L. Liggieri, (2010), "A multi-probe nonintrusive electrical technique for monitoring emulsification of hexane-in-water with the emulsifier C10E5 soluble in both phases", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 354, 1-3, doi:10.1016/j.colsurfa.2009.09.004, pp. 353-363.
[155]  
V.B. Fainerman, E.V. Aksenenko, A.V. Mys, J.T. Petkov, J. Yorke, R. Miller, (2010), "Adsorption Layer Characteristics of Mixed SDS/CnEOm Solutions. 3.Dynamics of Adsorption and Surface Dilational Rheology of Micellar Solutions", Langmuir, 26, 4, DOI: 10.1021/la902887n, pp. 2424-2429.
[156]  
V.B. Fainerman, E.V. Aksenenko, S.A. Zholob, J.T. Petkov, J. Yorke, R. Miller, (2010), "Adsorption Layer Characteristics of Mixed SDS/CnEOm Solutions. II. Dilational Viscoelasticity", Langmuir, 26, 3, DOI: 10.1021/la9024926, pp. 1796-1801.
[157]  
V.B. Fainerman, E.V. Aksenenko, S.V. Lylyk, J.T. Petkov, J. Yorke, R. Miller, (2010), "Adsorption Layer Characteristics of Mixed Sodium Dodecyl Sulfate/CnEOm Solutions 1. Dynamic and Equilibrium SurfaceTension", Langmuir, 26, 1, DOI: 10.1021/la902072v, pp. 284-292.
[158]  
V.B. Fainerman, S.V. Lylyk, E.V. Aksenenko, J.T. Petkov, J. Yorke, R. Miller, (2010), "Surface tension isotherms, adsorption dynamics and dilational visco-elasticity of sodium dodecyl sulphate solutions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 354, pp. 8-15.
[159]  
H.A. Ritacco, V.B. Fainerman, F. Ortega, R.G. Rubio, N. Ivanova, V.M. Starov, (2010), "Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 2. Theory and comparison with experiment", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365, 1-3, 10.1016/j.colsurfa.2010.01.052, pp. 204-209.
[160]  
E. Guzmán, F. Ortega, M.G. Prolongo, M.A. Rubio, R.G. Rubio, (2010), "On the Way to Functional Coatings: Polyelectrolyte Multilayers", Journal of Materials Science and Engineering, 4.
[161]  
A. Maestro, H.M. Hilles, F. Ortega, R.G. Rubio, D. Langevin, F. Monroy, (2010), "Reptation in langmuir polymer monolayers", Soft Matter, 6, 18, DOI: 10.1039/C0SM00250J, pp. 4407-4412.
[162]  
D. Clausse, (2010), "Differential thermal analysis, differential scanning calorimetry and emulsions", Journal of Thermal Analysis and Calorimetry, 101, 3, DOI: 10.1007/s10973-010-0712-1, pp. 1071-1077.
[163]  
F. Ravera, G. Loglio, V.I. Kovalchuk, (2010), "Interfacial dilational rheology by oscillating bubble/drop methods", Current Opinion in Colloid & Interface Science, 15, 4, doi:10.1016/j.cocis.2010.04.001, pp. 217-228.
[164]  
F. Ortega, H. Ritacco, R.G. Rubio, (2010), "Interfacial microrheology: Particle tracking and related techniques", Current Opinion in Colloid & Interface Science, 15, 4, doi:10.1016/j.cocis.2010.03.001, pp. 237-245.
[165]  
L. Liggieri, R. Miller, (2010), "Relaxation of surfactants adsorption layers at liquid interfaces", Current Opinion in Colloid & Interface Science, 15, 4, doi:10.1016/j.cocis.2010.02.003, pp. 265-263.
[166]  
G. Loglio et al., (2010), "Interfacial Proerties of Water/Hydrocarbon Systems: Experimental Study of Hifgh Frequency Drop Oscillations and Coalescence", Proceedings of.
[167]  
S. Limage, J. Krägel, M. Schmitt, C. Dominici, R. Miller, M. Antoni, (2010), "Rheology and structure formation in diluted mixed particle-surfactant systems", Langmuir, 26, 22, pp. 16754-16761.
[168]  
V.B. Fainerman, V.I. Kovalchuk, M.E. Leser, R. Miller, (2011), "Effect of the intrinsic compressibility on the dilational rheology of adsorption layers of surfactants, proteins and their mixtures", Colloid Stability: The Role of Surface Forces - Part I, Volume 1, DOI: 10.1002/9783527631070.ch12, T. Tadros, John Wiley.
[169]  
L. Liggieri, M. Ferrari, F. Ravera, (2011), "Recent Developments in Dilational Viscoelasticity of Surfactant Layers", Colloid Stability: The Role of Surface Forces - Part II, Volume 2, DOI: 10.1002/9783527631094.ch10, T. Tadros, John Wiley.
[170]  
E. Guzmán, F. Ortega, N. Baghdadli, G.S. Luengo, R.G. Rubio, (2011), "Effect of the molecular structure on the adsorption of conditioning polyelectrolytes on solid substrates", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375, 1-3, doi:10.1016/j.colsurfa.2010.12.012, pp. 209-218.
[171]  
V. Nastasa, K. Samaras, I.R. Andrei, M.L. Pascu, T. Karapantsios, (2011), "Generation of micro and nano-droplets containing immiscible solutions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, in press.
[172]  
M. Chebab, M. Benna, M. Ayadi, D. Clausse, (2011), "Study by DSC of water in oil emulsion stabilized by clays and CTAB", Journal of Dispersion Science and Technology, 32, 1, pp. 67-76.
[173]  
J. Chen, R. Vogel, S. Werner, G. Heinrich, D. Clausse, V. Dutschk, (2011), "Influence of the particle type on the rheological behaviour of Pickering emulsions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382, 1-3, doi:10.1016/j.colsurfa.2011.02.003, pp. 238-245.
[174]  
M. Kostoglou, E. Georgiou, T.D. Karapantsios, (2011), "A new device for assessing film stability in foams: experiment and theory", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382, 1-3, doi:10.1016/j.colsurfa.2010.12.028, pp. 64-73.
[175]  
T.D. Karapantsios, V.T. Papoti, D. Doxastakis, (2011), "Foaming activity of lupin protein isolates in the absence of insoluble protein aggregates", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382, 1-3, doi:10.1016/j.colsurfa.2010.11.025, pp. 74-80.
[176]  
E. Santini, J. Krägel, F. Ravera, L. Liggieri, R. Miller, (2011), "Study of the monolayer structure and wettability properties of silica nanoparticles and CTAB using the Langmuir trough technique", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382, 1-3, doi:10.1016/j.colsurfa.2010.11.042, pp. 186-191.
[177]  
G. Loglio, P. Pandolfini, L. Liggieri, A.V. Makievski, F. Ravera, (2011), "Determination of Interfacial Properties by the Pendant Drop Tensiometry: Optimisation of Experimental and Calculation Procedure", Drop and Bubble Interfaces, Vol. 2, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 10-48.
[178]  
G. Loglio, P. Pandolfini, F. Ravera, R. Pugh, A.V. Makievski, A. Javadi, R. Miller, (2011), "Experimental Observation of Drop-Drop Coalescence in Liquid-Liquid Systems: Instrument Design and Features", Drop and Bubble Interfaces, Vol. 2, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 479-495.
[179]  
V.I. Kovalchuk, F. Ravera, L. Liggieri, G. Loglio, A. Javadi, N.M. Kovalchuk, J. Krägel, (2011), "Studies in Capillary Pressure Tensiometry and Interfacial Dilational Rheology", Drop and Bubble Interfaces, Vol. 2, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 176-217.
[180]  
J.K. Ferri, A.D. Cramer, C. Kotsmar, R. Miller, (2011), "Coaxial Capillary Pendant Drop Experiments with Subphase Exchange", Drop and Bubble Interfaces, Vol. 2, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 238-271.
[181]  
S.S. Dukhin, V.I. Kovalchuk, E.V. Aksenenko, R. Miller, (2011), "Accumulation of Surfactant in the Top Foam Layer Caused by Ruptured Foam Films", Drop and Bubble Interfaces, Vol. 2, Progress in Colloid and Interface Science, R. Miller, L. Liggieri, Brill Publ., Leiden, pp. 402-432.
click on items to display

Figure 1: Experiment concept diagram

Figure 2: Detailed Experiment Timeline and associated Functional Objectives

Figure 3: Scan tomography by microscope of an emulsion of an ITEM-S sample. Each image is taken at a different scanning depth into the emulsion.

Figure 4: Images collected during the cooling down of water/ paraffin oil ITEM-F samples. The experiment starts at 20°C and finishes at -42°C.

Figure 5: Example of Thermograms of an emulsion of 3% water/97% paraffin oil emulsions stabilised by Span80 (surfactant) in an EMPI sample. The hatched area represents the water fraction.

Figure 6: Radius and velocities (vavx) distributions of a ITEM_S 6 (hexane 0.5 % into water).

Figure 7: Cluster size distribution in function of time (aging of the emulsion). The sample is Silicon oil (15%) into water.

Figure 8: Calibration curve: Freezing temperature of water droplets in paraffin oil versus the droplet radius. Three cooling rates are plotted 2, 1 and 0.5°C/min.

Figure 9: Preparation of the FASES experiment cells. Credit: Astrium-EADS

Figure 10: Assembly of the FASES experiment cells. Credit: Astrium-EADS

Figure 11: Exploded view of the FASES experiment cells. Credit: Astrium-EADS

Figure 12: Filling of the FASES experiment cells. Credit: Astrium-EADS

Figure 13: FASTER experiment concept.

Figure 14: FASTER experiment cell composition.

Figure 15: FASTER - Detailed Experiment Time Line and associated Functional Objectives.

19 June 2013: European Space Agency astronaut Luca Parmitano, Expedition 36 Flight Engineer, installs the Fundamental and Applied Studies of Emulsion Stability (FASES) experiment container into the Central Experiment Module (CEM) Lower of Fluid Science Laboratory (FSL) in the Columbus laboratory of the International Space Station. credit: NASA
 
© 2021 European Space Agency